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A B S T R A C T   

Soil hydrological and agricultural properties are highly affected by the soil water retention characteristics, which 
are closely related to the void size distribution and structure of the soil. Agricultural lands are often faced with 
the challenge of soil compaction, which alters the size, shape, connectivity, and morphology of soil voids. To 
determine the water retention curve and other hydrological and agricultural functions of un-compacted and 
compacted sandy soils, we used micro-CT techniques and image analysis procedures in both two and three di-
mensions. We found that these techniques were reliable, as they were validated against physical measurements 
and empirical physically-based models, and provided a relatively simple and fast way to characterize the key 
features of soil hydrological and agricultural properties. The findings highlight the impact of compaction on the 
soil void size distribution, resulting in increased water holding capacity, greater water availability for root up-
take, and reduced hydraulic conductivity. We also discussed the differences between the two and three- 
dimensional analyses, highlighting the better ability to characterize soil hydrological and agricultural func-
tions and soil water retention curve using the three-dimensional image analysis approach.   

1. Introduction 

1.1. Compaction 

Compaction is a major cause of soil degradation in agricultural en-
vironments, and seems to be inevitable in modern agriculture (Hamza 
and Anderson, 2005; Nawaz et al., 2013; Mossadeghi-Björklund et al., 
2016; Keller et al., 2022). Compaction occurs at a variety of scales and 
may result from anthropogenic and natural processes such as vehicular 
traffic over the fields, cycles of wetting and drying after tillage, grazing 
animals, rainfall drops, and roots growth (Or et al., 2000; Assouline, 
2004, 2006a; Hamza and Anderson, 2005; Nawaz et al., 2013). Soil 
compaction is characterized by the increase of soil bulk density and the 
related decrease of porosity (Mossadeghi-Björklund et al., 2016). It 
disturbs the soil void system and alters the void-size distribution, void 
geometry and morphology, and void connectivity (Horn et al., 1995; 
Mossadeghi-Björklund et al., 2016; Goldberg-Yehuda et al., 2022). 
These changes in soil structure have a significant impact on soil hy-
draulic properties, soil water retention characteristics, and soil hy-
draulic conductivity, resulting in the formation of preferential flow 
paths and reduced soil aeration (Horn et al., 1995; Assouline et al., 1997; 

Hendrickx and Flury, 2001; Smith et al., 2001; Assouline, 2006a,b; Ngo- 
Cong et al., 2021). 

1.2. Water retention curve 

The soil water retention curve (WRC) is a fundamental soil hydraulic 
characteristic that describes the relationship between the soil matric 
potential (or capillary head), ψ and the volumetric water content, θ. It is 
indispensable for the solution of the equations that describe water flow 
processes in soils (Assouline and Or, 2013). The WRC is strongly related 
to the soil structure and the resulting void size distribution (Assouline, 
2005; Pires et al., 2008; Zhou et al., 2017). 

In principle, large voids are the first to drain, due to their low matric 
suction, and the finer voids hold water at higher levels of water suction 
(Or et al., 2002; Easton and Bock, 2016). Therefore, the shape of the 
WRC is related to the probability function of the void size of the soil, and 
its derivative with regards to ψ , can express the corresponding void size 
distributions (Tuller et al., 1999; Assouline, 2005; Assouline, 2021; 
Jabro and Stevens, 2022). 

Several traditional methods are available for measuring the WRC, 
such as the hanging water column (Dane and Hopmans, 2002; Schelle 
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et al., 2013), the suction table (Klute, 1986; Dane and Hopmans, 2002), 
the pressure cell (Klute, 1986; Dane and Hopmans, 2002), the pressure 
plate extractor (Klute, 1986; Dane and Hopmans, 2002; Schindler et al., 
2012), and the HYdraulic PROPerty analyzer (Schindler et al., 2015). 
Among these methods, the hanging water column and the pressure plate 
extractor are the most commonly used for measuring the WRC. In the 
hanging water column method, a negative pressure is applied to the soil 
sample, causing the water to flow out until hydraulic equilibrium is 
achieved (Dane & Hopmans, 2002, Schelle et al., 2013). In the pressure 
plate extractor method, positive pressure is applied to the soil sample, 
and the water drainage is measured (Dane & Hopmans, 2002, Schelle 
et al., 2013). However, both methods are laborious and time-consuming 
(Assouline and Or, 2013). 

The WRC plays a crucial role in hydrological and agricultural func-
tions as it provides direct and indirect information about soil hydraulic 
properties, including plant-available water in soil, hydraulic conduc-
tivity function, predicting unsaturated water flow, saturation degree at 
field capacity, infiltration capacity curve, and more (Schelle et al., 2013; 
Assouline, 2021). Numerous WRC models have been developed to model 
soil water dynamics and solute transport because of its importance 
(Brooks and Corey, 1964; Campbell, 1974; van Genuchten, 1980; Arya 
and Paris, 1981; Assouline et al., 1998; Zhou et al., 2017). The most 
widely used empirical models for WRC are the Brooks and Corey (1964) 
and the van Genuchten (1980) models. Additionally, different models 
use the WRC to describe unsaturated hydraulic conductivity of the soil 
(Mualem, 1986; Assouline, 2001), as well as other hydrological func-
tions of the soil related to drainage, evaporation, and water availability 
for plants (Assouline, 2021). Assouline (2006a) proposed an empirical 
approach that models the effect of changes in soil bulk density on the 
WRC, enabling relatively accurate predictions of the impact of 
compaction on the soil WRC. Therefore, this model will be used here and 
its predictions will be compared to the WRC data generated by Micro-
–computed tomography (μCT) techniques and image analysis proced-
ures, as detailed below. 

1.3. Micro CT and image analysis 

μCT is an effective method to characterize soil void networks 
(Katuwal et al., 2015; Hamamoto et al., 2016; Singh et al., 2021). This 
technique generates two dimensional (2D) cross-sections of the scanned 
samples with a spatial resolution of a few microns (Skarzyński and 
Tejchman, 2016). By assembling thousands of these cross-sections, three 
dimensional (3D) images of the sample can be generated (Cnudde and 
Boone, 2013; Skarzyński and Tejchman, 2016). μCT has become an 
essential research tool in various disciplines including physics (Shep-
pard et al., 2014), biology and toxicology (Wise et al., 2013), geo-
sciences (Cnudde et al., 2006), and medical fields (Swain and Xue, 
2009). Despite its advantages, the μCT technique also has some note-
worthy disadvantages. One of these is that it requires a significant 
amount of computing power to manipulate and analyze the 3D images. 
Additionally, removing noise and handling artifacts can be challenging 
and subjective, requiring expertise and experience. Finally, for soil sci-
ence purposes, μCT may not be suitable for very fine-textured soils due 
to resolution limitations (Zhou et al., 2017). 

In recent years, μCT and image analysis methods have been 
employed to quantify 3D soil structures from void scale to core scale 
(Helliwell et al., 2013; Zhou et al., 2017), and to study soil structure, 
void network continuity and geometry (Taina et al., 2008; Helliwell 
et al., 2013). Quantitative understanding of these properties may allow 
for the generation of a WRC in a relatively simple, fast and non- 
destructive manner. Previous works have shown that WRC of coarse 
texture porous media can be estimated from three dimensional repre-
sentation of the matrix as a complex network of pores and throats, 
generated from μCT (Bhattad et al., 2011; Mahabadi et al., 2016). 
However, as mentioned above, these procedures require high computing 
power in order to generate the three dimensional structures and to 

model the pore-throat network of the examined domain. Our study 
presents a new approach to generate soil WRC using high-resolution μCT 
and image analysis procedures. This paper discusses the advantages and 
disadvantages of both 2D and 3D image analysis methods, while 
considering the possibility of analyzing pore size distribution only in 2D 
without the need of computing the complex three dimensional network 
of pores and throats. Recently Ngo-Cong et al. (2021) have shown 
experimentally, for fine textured soils, that changes in pore size distri-
bution due to compaction is sufficient to estimate changes to soil WRC. 
Here we characterize the effect of soil compaction on WRC, for coarse 
textured soil, using the image analysis method and validate it by 
comparing it to the physically-based empirical model of Assouline 
(2006a). 

2. Materials and methods 

This study is composed of three parts. Firstly, the impact of 
compaction on sandy soil void size distribution is studied using X-ray 
μCT and 2D and 3D image analyses. Secondly, soil WRC is generated for 
both compacted and un-compacted soils using the information about 
void size distribution acquired through the image analysis procedures, 
and the results will be compared to Assouline’s model predictions 
(Assouline, 2006a) for validation. Finally, the computed WRC is used to 
estimate the impact of compaction on various soil hydraulic and hy-
drological properties. 

2.1. μCT imaging of undisturbed and compacted sand samples 

A non-destructive imaging technique using high-resolution μCT 
(SKYSCAN 1172, Bruker, Kontich, Belgium) was employed to image 
sand samples before and after compaction. The X-ray source voltage was 
80 kV, and the electrical current was 0.1 mA. Scans were conducted with 
aluminum and copper filters, and sample rotation of 0.2◦. The software 
NRecon (Bruker, Kontich, Belgium) reconstructed images with a voxel 
resolution of 4.42 μm. Image analyses were performed using Python and 
ParaView, as described below. 

Quarry coarse sand (quartz) with a mean grain diameter of approx-
imately 500 μm (sand characteristics can be found in Nachshon, 2016) 
was packed into Polyvinyl Chloride (PVC) tubes, which were open at the 
top and sealed at the bottom. The tubes were 20 mm long and had a 
diameter of 16 mm. The sand columns were scanned before and after 
mechanical compaction, which was achieved using a hand-operated 
press that fitted exactly into the inner diameter of the column. The 
sand samples were compressed by slowly pushing the shaft downward to 
generate a one-dimensional confined compression. The samples were 
compressed down to a decrease of 2 mm in the total length of the sand 
sample, resulting in an increase of approximately 10% in the bulk 
density of the samples. The soil bulk mass was 4.78 g. 

This sand was chosen because its grain and void texture is coarse, 
thus, with the 4.42 μm resolution of the μCT, the x-ray absorbance yields 
good image contrast between the dense medium (quartz, shown in dark 
shades) and voids (light shades). However, the resolution of the device 
would not allow us to distinguish between smaller particles and image 
noise in finer textured soils. 

The high-resolution μCT scans were used to analyze the soil structure 
of the sand samples at two different depths: the top 7 mm and at a depth 
of 9–18 mm. Goldberg-Yehuda et al. (2022) found that the effect of 
compaction decreases with distance from the source of pressure, and in 
the specific sand and under the experimental conditions, the impact of 
compaction is not observed at depths greater than 9 mm. Henceforth, 
the top and lower levels of the scanned samples will be referred to as 
’compacted’ and ’un-compacted’, respectively. The results of both levels 
were then utilized to characterize the impact of compaction on the void 
size distribution and void network of the sand. The obtained void data 
was further used to generate the WRC of both the compacted and un- 
compacted samples. 
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Each μCT scan generates hundreds of images of 2D transects of the 
sample with a 4.42 μm distance between adjacent slices. For image 
analysis, both 2D and 3D procedures were performed. For the 2D 
analysis, 100 random transects were selected from the thousands of 
images, and for the 3D analysis, 1800 2D slices were assembled together 
to form the 3D structure. Both 2D and 3D images were analyzed using 
Python, as detailed below. 

2.2. Arrangement of soil void system 

To obtain the void size distribution from the scanned samples, Py-
thon was used for image analysis, as described below: 

For the 2D analysis, 100 vertical transects were randomly selected 
from both the compacted and un-compacted samples. The edges of the 
transects were removed to avoid boundary effects, resulting in images of 
size 18001800 pixels (7.96 mm each side). For the 3D analysis, 1800 2D 
transects were cropped from the center of the scanned sample to a size of 
1800 × 1800 pixels and assembled together to generate the 3D structure 
(7.96 mm on each side). 

To reduce noise (reconstruction artifacts) in the 2D slices, the gray 
scale images were converted into binary images of black and white for 
the sand grains and voids, respectively. For the 3D analysis, both binary 
conversion and noise reduction were performed after constructing the 
3D image. Noise reduction for both sets included ’Dilation’ and ’Erosion’ 
morphology and a Gaussian filter, all part of the Python’s Scipy library 
(Virtanen et al., 2020). For the 3D analysis, ’Remove small objects’ 
morphology was performed using the Python’s scikit-image library (Van 
Der Walt et al., 2014). 

To generate 2D and 3D void network representations, we used the 
Python’s PoreSpy (Gostick et al., 2019) and OpenPNM (Gostick et al., 
2016) packages. The process undertaken by the PoreSpy package, as 
outlined in Gostick et al. (2016) and Gostick (2017), involves the con-
struction of void networks of throats and pores from the 2D or 3D im-
ages. The process comprises of several key steps: (1) the calculation of 
Euclidean distances in the empty regions and peak identification; (2) the 
segmentation of the distance map into different watersheds (pores); and 
(3) the conversion of the segmented watersheds into geometrical fea-
tures, such as pore volume and throat size. 

2.3. Computing soil WRC from μCT data 

The 2D and 3D image analysis procedures detailed above provided 
void network data and detailed information about size distribution of 
voids in the scanned samples. In the analyzed images, each void’s area or 
volume (for 2D and 3D, respectively) was represented by an effective 
circle or a sphere, from which the void radius was extracted. This radius 
represents the void’s ability to hold water under matric suction, as 
described by the Young–Laplace equation: 

ψ =
2γcosϕ

ρgr
(1) 

Here, ψ is the matric suction (m),γ is the liquid surface tension (for 
water, it is 0.0727 kg/s2), ϕ is the contact angle between the liquid and 
solid phases (considered to be zero for water and quartz, with 
coscosϕ ≈ 1, ρ is the water density (1000 kg/m3), g is the acceleration 
due to gravity (9.8 m/s2), and r is the void radius (m). For suctions 
greater than ψ , the void is considered drained of its water. 

To calculate the volumetric water content (θ) of the entire sample, 
we divided the void volume by the total volume of the sample. For 2D 
images, the term “volume” should be understood as area. We then used 
void size distribution data to compute the volume of drained water from 
the void network at various matric potentials to generate the WRC from 
the μCT scans. Equation (1) was used to calculate ψ for each void in the 
system. The total drained water was calculated for each ψ by summing 
up all voids drained at this specific suction. Finally, θ(ψ) was calculated 
as the remaining water (not drained) divided by the total volume. 

It is important to note that this approach considers a full draining of 
the voids, which ignores the fact that the water content of any drained 
porous media cannot go below the residual water content of the matrix. 
Therefore, in the calculation process of water draining, we assumed that 
only 90% of the void was drained. For each ψ , only 90% of the drained 
water volume was taken into account, and the remaining 10% was 
considered as residual water. This value was chosen as this is roughly the 
known residual water content of the examined coarse sand (Nachshon, 
2016). 

2.4. WRC − physical measurements 

The WRC was physically measured using the hanging column 
method (Schelle et al., 2013), in which a 100 g sample of the undis-
turbed sand was placed on a porous cup that was hydraulically con-
nected to a hanging water column. Initially, the sand was saturated, and 
the hanging water column was gradually lowered in 2 cm intervals to 
create conditions of an increasing suction. The amount of drained water 
from the sample was measured for each suction, and the corresponding 
water content versus matric potential was calculated. The hanging col-
umn was lowered only after reaching hydrostatic conditions for a few 
hours, with no further water drainage at the examined suction. 

The physical measurements revealed that the porosity values 
computed from the μCT images were slightly underestimated. Therefore, 
the computed porosities were multiplied by a correction factor, f , which 
is further explained in the results section. 

2.5. Modeling the effect of bulk density 

The validation of the undisturbed samples’ WRC, generated using the 
image analysis procedures, was performed by comparing the computed 
WRC with physically measured ones. In addition, the compacted WRC 
generated from μCT scans was validated using Assouline’s (2006a) 
model. This model was selected because it incorporates the impact of 
changes in soil bulk density due to compaction on the soil WRC. It ac-
counts for four parameters: saturated water content (θs), residual water 
content (θr), α, and μ. α and μ are fitting parameters in the WRC equation 
that relates the effective degree of saturation, Se = (θ − θr)/(θs − θr), to 
ψ : 

Se(ψ) = 1 − exp
[
− α

(
|ψ |− 1

− |ψL|
− 1 )μ ]

, (2)  

0 ≤ |ψ| ≤ |ψL|

Here, ψL is the capillary head corresponding to a very low water 
content,θL, representing the limit of the WRC domain of interest. In this 
study, |ψL| was 1 m and θL = θr. 

The model states that for compacted soil conditions where soil bulk 
density has increased, the saturated water content of the compacted soil 
changes according to: 

θsc = θs

(
ρs − ρc

ρs − ρ

)

, (3)  

where θsc is the saturated water content of the compacted soil,θs is the 
initial saturated water content of the soil before compaction, ρs is the soil 
particle density (2.65 g/cm3), ρc is the compacted bulk density, and ρ is 
the initial bulk density. 

The volumetric residual water content of the compacted soil is given 
by: 

θrc = θr

(ρc

ρ

)
, (4)  

where θrc is the volumetric residual water content of compacted soil, and 
θr is the residual water content before compaction. 

The impact of changes in soil bulk density on the α and μ parameters 
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is described by: 

αc = α
(ρc

ρ

)3.72
(5)  

μc = μ
(ρc

ρ

)2.3
, (6)  

where αc and μc are the fitting parameters of the compacted soil, while α 
and μ are for the initial undisturbed conditions. 

2.6. Linking the WRC to hydrological and agricultural functions 

A recent study by Assouline (2021) has demonstrated how the WRC 
can be used to characterize various agricultural and hydrological vari-
ables of soil, such as the effective saturation degree at field capacity 
(SeFC), relative hydraulic conductivity at field capacity (KrFC), soil 
available water capacity (AWC), and duration of stage one evaporation 
(ts1). 

These relationships were used here to demonstrate the impact of 
compaction on hydrological and agricultural functions of the soil. All the 
relationships use the coefficient of variation,ε(− ), to characterize the 
WRC: 

ε =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ
(

1 + 2
μ

)

− Γ
(

1 + 1
μ

)2
√

Γ
(

1 + 1
μ

)

+ |ψL|
− 1

, (7)  

where Γ is the complete gamma function, and all other parameters are as 
detailed in Equation (2). 

Changes in the effective saturation degree at field capacity due to 

compaction can be described by the following linear expression: 

SeFC = 0.22ε+ 0.16. (8)  

The following equations describe the impact of compaction on various 
soil agricultural and hydrological variables, specifically the relative 
hydraulic conductivity at field capacity (KrFC), available water capacity 
(AWC), and duration of stage one of evaporation (ts1), as function of ε: 

KrFC = − 0.0053ε+ 0.0098 (9)  

AWC = 0.075ε+ 0.035 (10)  

ts1 = − 115.48*ε2 + 152.61*ε − 24.525. (11)  

3. Results and discussion 

The results are presented in four sections. The first section describes 
the impact of compaction on void size distribution. The second section 
focuses on estimating sand WRC using image analysis of 2D and 3D μCT 
scans. The third section examines the effect of compaction on the WRC 
and validates the results obtained by the image analysis method with 
respect to the bulk density model of Assouline (2006a). The fourth and 
final section discusses the compaction effect on soil hydrological and 
agricultural functions. 

3.1. μCT scans and observed impact of compaction on void size 
distribution 

The study employed 2D and 3D image analysis procedures to 
examine the effects of compaction on void size distribution and void 
network characteristics of un-compacted and compacted sand samples. 
Fig. 1 illustrates the image analysis procedure for the 2D images for both 

Fig. 1. 2D image analysis for un-compacted (a), and compacted (b) sand samples. Panels a1,b1: μCT 2D grayscale cross-section scans (1800 × 1800 pixel). Panels a2, 
b2: Binary images after noise cleaning. Panels a3,b3: computed void networks. In (3) the variation of the colors in the void network indicates the different sizes of 
void radius, where warm (cold) colors denote larger (smaller) voids. 
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conditions. The μCT scan produces a 2D grayscale image, where gray 
levels indicate the density of the scanned element. Dark colors denote 
low density (air), while brighter colors high density (solid) (Fig. 1, 
panels a1 and b1). A cleaning procedure is applied to remove noise and 
artifacts and generate a binary image, where voids and sand particles are 
segmented (Fig. 1, panels a2 and b2) A void network is then computed 
based on the binary images, showing the locations and sizes of the voids 
(Fig. 1, panels a3 and b3). 

The images in Fig. 1 show that compaction of the sandy medium 
results in a reduction of total porosity and void sizes. This reduction is 
most noticeable in the void-network analysis. The un-compacted sample 
(Fig. 1a3) displays a greater proportion of reddish/warmer spheres, 
which represent larger voids, in comparison to the compacted state 
(Fig. 1b3). 

A similar analysis was also performed on 3D images (Fig. 2) 
providing even greater clarity on how compaction decreases void sizes, 
as seen in the 3D network visualization. In this visualization, it is 
apparent that the compacted sample’s void network (Fig. 2b2) has a 
more complex and branched structure, containing many small voids and 
far fewer large voids compared to the un-compacted state (Fig. 2a2). 

Continuing from the above observations, the data obtained from the 
2D and 3D void-network analyses using the PoreSpy package were used 
to generate a quantitative representation of the void size distribution for 
both un-compacted and compacted samples. Fig. 3 shows the void size 
distribution for both un-compacted and compacted samples, indicating 
that the compacted samples’ radius distribution is skewed towards the 
smaller voids in both 2D and 3D analyses. The maximal probability 
density of 23 and 35 mm− 1 for void radii of ~0.022 mm and ~0.019 mm 
for the compacted sample is compared to a peak of 21 and 35 mm− 1 of 
void radii of ~0.023 mm and ~0.018 mm for the un-compacted sample 
(2D and 3D, respectively). Additionally, the un-compacted domain has a 
higher density for radii larger than 0.078 and 0.05 mm (2D and 3D, 

respectively). 
The porosity of the scanned medium can be determined by calcu-

lating the ratio of the void volume to the volume of the entire (binary) 
image. Table 1 displays the computed porosity of the un-compacted and 
compacted samples based on the 2D and 3D images. Furthermore, 
Table 1 also presents the porosity values obtained from physical mea-
surements of bulk density. 

For the compacted porosity, a discrepancy of 12% and 9% is found 
between the physical measurements and image analysis (2D and 3D, 
respectively, see first row in the table). Also, the 2D and 3D analyses 
underestimate the change in porosity due to compaction (last row in the 
table). Nonetheless, a significant reduction in porosity, approximately 
between 5 and 10%, was measured for the compacted samples compared 
to the uncompacted, for both physical measurements and 2D/3D image 
analysis procedures. These observations are important as they indicate 
that the μCT scans and image analysis procedures capture the physical 
changes and reduced porosity of the compacted sandy soil samples. 
However, the absolute values obtained from the μCT scans are not 
entirely accurate due to the technical limitations such as imperfect 
cleaning and segmentation processes of the 2D and 3D images. To cor-
rect these disparities and to provide a comparative basis of the WRC that 
will be presented later, it is proposed to rescale the void size radii ob-
tained from the μCT scans by multiplying these readings by a correction 
factor, f1/n, where 

f =
θp

θCT
, (12)  

θp and θCT are physically measured porosity and μCT scans obtained 
porosity, and n is the dimension of the analyzed images (2 and 3). The 
intuition behind the exponent 1/n is that the porosity scales with the 
pore radii to the power n. Table 2 presents the correction factor f , which 
will be used for the 2D and 3D images under the un-compacted and 

Fig. 2. 3D image analysis for un-compacted (a), and compacted (b) sand samples. Panels a1,b1: 3D images (blue denotes solid and red void). Panels a2,b2: void 
network. Panels a3,b3: images together with void network, for un-compacted (top row) and compacted (bottom row) samples. The variation of the colors in the void 
network indicates the different sizes of void radius, where warm (cold) colors denote larger (smaller) voids. 
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compacted conditions. 
The reduction in porosity and void sizes observed in Figs. 1–3 and 

Table 1 is consistent with findings from previous studies on the impact of 
compaction on soil physical properties (Liu et al., 2021; Goldberg- 
Yehuda et al., 2022). However, assessing the quantitative impact of 
compaction on hydraulic properties, especially on the WRC, is more 
complex and there is limited literature on this topic (Naveed et al., 
2016). The following sections will discuss a relatively simple procedure 
that uses void size distribution data obtained from μCT 2D and 3D im-
ages to characterize water retention properties of the sandy media 
before and after compaction. 

3.2. μCT image analysis to assess WRC 

As described in the Materials and Methods section, the WRC was 
estimated by considering the void size distribution of the scanned 
samples and computing the amount of water released by the sample at 
different successive matric suctions using the Young-Laplace Equation. 
The void radii obtained from image analyses, both 2D and 3D, were 
multiplied by f1/n as detailed in Table 2. The computed WRC of the un- 
compacted sand was compared to the measured WRC in four replicates 
using the hanging column method. Due to inherent variability of pack-
ing, the different replicates had slightly different levels of bulk density 
and porosity. Therefore, all measured WRCs were standardized to a 
porosity of 0.41 cm3/cm3 corresponding to a bulk density of 1.56 g/cm3, 
as detailed in Table 1, using Assouline’s (2006a) model that links 
changes in bulk density to WRC. 

Fig. 4 presents the measured and computed water retention curves of 
the un-compacted sand, for 2D image analysis (blue) and 3D image 
analysis (orange). The computed WRCs were found to be in agreement 

with the measured WRCs (four samples denoted by dotted lines, their 
average by the solid black line), and some differences were observed 
between the measured air entry value (~0.05 cm) and the computed air 
entry value obtained from the 2D images (~0.03 cm). The air entry 
value computed from the 3D image analysis (~0.05 cm) was in better 
agreement with the measured value. The good agreement between the 
WRCs obtained by the 2D/3D analyses and the measured curves dem-
onstrates the strength of the proposed approach to compute WRC from 
2D and 3D μCT scans, and suggests that this method could be used to 
estimate the WRC of granular media. 

3.3. Impact of compaction on WRC and comparison to the bulk density 
model 

The proposed approach to compute WRC from 2D/3D image analysis 
of μCT scanned samples is user-friendly and enables the characterization 
of soil WRC for both disturbed (e.g., compacted) and undisturbed soil 
samples. 

As mentioned earlier, Assouline (2006a) developed a model that 
predicts the resulting WRC of a compacted soil based on the WRC at a 
reference bulk density and the actual bulk density after compaction. This 
model was used here to validate the μCT image analysis approach for 
computing soil WRC after compaction. To this end, the soil WRCs of sand 
samples were computed using the 2D/3D image analysis procedures 
prior to and following compaction, and compared to the WRC resulting 
from the model for the corresponding conditions (Table 1). Fig. 5 depicts 
the WRCs obtained from both the image processing approach and the 

Fig. 3. Void size distribution for un-compacted and compacted sand samples obtained from the 2D and 3D μCT analyses.  

Table 1 
Porosity values from physical measurements and (2D and 3D) image analyses for 
the compacted and uncompacted samples.   

Physical 
measurements 

2D Image 
analysis 

3D Image 
analysis 

Compacted porosity [-]  0.37  0.33  0.34 
Uncompacted porosity [-]  0.41  0.36  0.35 
Change of porosity due to 

compaction [%]  
9.75  7.57  4.42  

Table 2 
f values for un-compacted and compacted samples, for both 2D and 3D image 
analysis.   

3D Image analysis 2D Image analysis 

Uncompacted f [-]  1.16  1.15 
Compacted f [-]  1.10  1.13  

Fig. 4. WRC of the physically measured samples (dotted lines), their averaged 
WRC (solid black line), and computed WRC from void size distribution, ob-
tained from the 2D and 3D μCT analyses (blue and orange lines, respectively). 
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model. First, it can be seen that the image analysis approach accurately 
reproduced the expected effect of compaction on the WRC (as shown by 
the solid lines in panels a and b). Second, both the 2D and 3D curves 
show similar behavior to the WRC predicted by the model (dashed line). 
The root mean square error was 0.02 for the 2D image analysis and 
0.007 for the 3D analysis. 

However, some differences were observed in the air entry value, 
which is influenced by the largest voids. The predicted air entry value 
after compaction was overestimated (by 47% in the 2D and 24% in the 
3D) compared to the computed values obtained by the image analysis 
method. This could be due to inaccuracies in image cleaning and seg-
mentation, particularly for the large voids. 

Fig. 5c,d shows the normalized WRCs obtained from the image 
analysis procedures for both the un-compacted and compacted samples. 
The curves were normalized with respect to θs to highlight the differ-
ences induced by compaction. The main differences are: (1) the air entry 
value; and (2) the curve shape, which is affected by the void size dis-
tribution of the sample. 

Compaction results in an increase in the air entry value (Fig. 5c,d), 
which is due to the reduction in void sizes in the compacted soils (Figs. 2 
and 3). This leads to an increase in the soil water retention. 

With respect to the slope of the curves, it can be seen that the com-
pacted sample curves have a more moderate slope compared to the un- 
compacted curves, for both 2D and 3D (Fig. 5c,d). The differences in 
curve slope reflect the variance in void size distribution, where a steep 
slope indicates a relatively uniform void size distribution, and a mod-
erate slope indicates a wider range of void sizes. The changes in void size 
distribution of the compacted sand are a result of void compaction 
(Fig. 3), as well as breaking of some of the sand particles, which creates 
more voids at various sizes (Goldberg-Yehuda et al., 2022). These results 
are consistent with previous studies that used different experimental 
approaches (Li and Zhang, 2009; Lipiec et al., 2012). 

3.4. Linking the WRC characteristic to hydrological and agricultural 
functions 

The WRC is a valuable tool for understanding several valuable hy-
drological and agricultural functions of soil (Assouline, 2021). With the 
aid of μCT 2D or 3D image analyses, it is easy to estimate the effect of 
compaction on the soil WRC and express how these functions are 
impacted. Table 3 summarizes the effect of compaction on the following 
soil hydrological and agricultural functions (Equations 7–11): (1) rela-
tive hydraulic conductivity at field capacity (KrFC); (2) saturation degree 
at field capacity (SeFC); (3) available water content in the soil (AWC); 
and (4) duration of stage-one evaporation (ts1). 

From the 2D and 3D analyses, it is apparent that the ε value (Equa-
tion (7) is higher for the compacted conditions compared to the un- 
compacted ones, resulting in increased SeFC, AWC and ts1. As previ-
ously mentioned, compaction mainly affects the void size distribution of 
the soil, decreasing larger voids and increasing the proportion of smaller 
voids. As a result, water content at higher levels of matric suction is 
elevated, leading to the observed changes in the hydrological and 
agricultural functions detailed above. At field capacity, where drainage 
has practically ceased (Assouline and Or, 2014), KrFC is reduced and SeFC 
increases due to compaction. This is due to the increased proportion of 
the small voids, which limit drainage and increase water retention. For 
the same reason, AWC is higher for compacted conditions, as more water 

Fig. 5. WRC from 2D (a) and 3D (b) image analysis for the un-compacted and compacted samples, and the predicted curves by the model (dashed lines). Panels c and 
d show the normalized WRC to emphasize the differences induced by compaction. 

Table 3 
Hydraulic parameter before and after compaction based on mathematical 
expression of the soil WRC.   

3D 2D  

Uncompacted Compacted Uncompacted Compacted 

ε  0.221  0.255  0.237  0.251 
KrFC (− )  0.0086  0.0084 ↓  0.0085  0.0084 ↓ 
SeFC (− )  0.209  0.216 ↑  0.212  0.215 ↑ 

AWC (
cm3

cm3)  
0.052  0.054 ↑  0.053  0.054 ↑ 

ts1(d)  3.65  6.90 ↑  5.12  6.544 ↑  
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is held in the compacted soils, making more water available for uptake. 
In terms of the duration of stage-1 evaporation, the increased water 

retention in smaller voids of the compacted soil results in better hy-
draulic connection between the wet matrix and its interface with the 
atmosphere, where evaporation occurs during stage-one of evaporation. 
This leads to more efficient water delivery to the evaporation front in 
compacted soils and longer ts1 compared to un-compacted conditions. 
This was demonstrated by direct measurements in a previous study by 
Goldberg-Yehuda et al. (2022). 

These results are consistent with trends previously reported in the 
literature, which strengthens the conclusion that the presented μCT 
scanning and image analysis approach provides an efficient, quick, and 
easy-to-use tool for estimating soil WRCs in both undisturbed and 
compacted conditions. 

3.5. Limitations of the image analysis procedures 

It is important to mention some of the limitations of the image 
analysis procedures. First, for 3D, much greater processing time and 
computing power are needed in comparison to 2D. However, using 
PoreSpy and OpenPNM for 2D is less accurate than for 3D images as 
these packages were originally built for 3D. Additionally, the texture, 
voids and particle sizes of the scanned media must fit the μCT resolution, 
in order to ensure high-quality imaging of the sample. 

Furthermore, it is important to note that the 2D transects are limited 
in their ability to capture information on void sizes in the axis perpen-
dicular to the image. As a result, voids that are wide at the plane of the 
transect (x, y) but thin over the perpendicular axis (z) are considered 
large voids, even though their thin opening over the z-axis is the critical 
property that affects the hydraulic properties (Fig. 6). This bias is not 
present in the 3D analysis, as information in all axes is considered. 

The 2D analysis is satisfactory to understand the general trends in the 
hydraulic parameters (as seen in Table 3). However, in order to get a 
more accurate picture of the WRC, the 3D analysis should be preferred. 
As seen in Fig. 5, the model’s predictive power is higher when applied to 
the 3D analysis (panel b) in comparison to the 2D (panel a). Not sur-
prisingly, there is a tradeoff between the computational demands of the 
analysis and the accuracy of the results. 

4. Summary and conclusions 

In this study, μCT techniques were used to generate WRC based on 
void size distribution of both un-compacted and compacted soil samples. 
2D and 3D image analysis procedures were applied to analyze the data, 
and the impact of soil compaction on hydrological and agricultural soil 
variables was investigated. The measured WRC and the computed un- 
compacted WRC were found to be in good agreement. Furthermore, 
the procedure used to compute the compacted WRC was successfully 
verified, as there was good agreement between it and the model’s pre-
dictions, in particular regarding the 3D analysis. 

Compaction was found to cause a reduction in the total porosity and 
a decrease in void sizes. The most notable changes in the compacted 
WRC (compared to un-compacted conditions) include: higher levels of 
air entry pressure; higher water content levels; and a wider distribution 
of void sizes. As a result of these changes, important agricultural func-
tions are affected, such as an increase in water retention and availability 
for plant uptake, a reduction in hydraulic conductivity at field capacity, 
and an extension of the duration of stage-one of evaporation. 

This study demonstrates an efficient and non-destructive method for 
estimating soil WRC, successfully validated for coarse texture sand. Both 
the 2D and 3D image analysis procedures were found suitable for esti-
mating WRC in undisturbed and compacted sand samples, with the 3D 
analysis providing more accurate results. Future research should explore 
the applicability of these procedures for soils with finer texture grains, 
using higher resolution μCT scanners. Moreover, machine learning and 
deep learning methods can (and should) enhance our image analysis 

capabilities, especially in the segmentation process. 
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